70 research outputs found

    A Rare Encounter with Very Massive Stars in NGC 3125-A1

    Full text link
    Super star cluster A1 in the nearby starburst galaxy NGC 3125 is characterized by broad He\ii \lam1640 emission (full width at half maximum, FWHM1200FWHM\sim1200 km s1^{-1}) of unprecedented strength (equivalent width, EW=7.1±0.4EW=7.1\pm0.4 \AA). Previous attempts to characterize the massive star content in NGC 3125-A1 were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph (STIS) and the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (\hst). We use these data to study three clusters in the galaxy, A1, B1, and B2. We derive cluster ages of 3-4 Myr, intrinsic reddenings of E(BV)=0.13E(B-V)=0.13, 0.15, and 0.13, and cluster masses of 1.7×1051.7\times10^5, 1.4×1051.4\times10^5, and 1.1×1051.1\times10^5 M_\odot, respectively. A1 and B2 show O\vb \lam1371 absorption from massive stars, which is rarely seen in star-forming galaxies, and have Wolf-Rayet (WR) to O star ratios of N(WN56)/N(O)=0.23N(WN5-6)/N(O)=0.23 and 0.10, respectively. The high N(WN56)/N(O)N(WN5-6)/N(O) ratio of A1 cannot be reproduced by models that use a normal IMF and generic WR star line luminosities. We rule out that the extraordinary He\ii \lam1640 emission and O\vb \lam1371 absorption of A1 are due to an extremely flat upper IMF exponent, and suggest that they originate in the winds of very massive (>120M>120\,M_\odot) stars. In order to reproduce the properties of peculiar clusters such as A1, the present grid of stellar evolution tracks implemented in Starburst99 needs to be extended to masses >120M>120\,M_\odot.Comment: Accepted for publication in ApJ. 34 pages, 12 figure

    Shining A Light On Galactic Outflows: Photo-Ionized Outflows

    Full text link
    We study the ionization structure of galactic outflows in 37 nearby, star forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modeled as a co-moving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photo-ionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photo-ionization models constrain the ionization parameter (U) between -2.25 < log(U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z_\odot. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total Hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.Comment: 30 pages, 17 tables, 14 figures. Accepted for publication in MNRA

    Carbon Abundances in Starburst Galaxies of the Local Universe

    Get PDF
    The cosmological origin of carbon, the fourth most abundant element in the Universe, is not well known and matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in a spectral range from 1600 to 10000 \AA\ on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local Universe. We determined chemical abundances through traditional nebular analysis and we used a Markov Chain Monte Carlo (MCMC) method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] vs. [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O vs. O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise intermediate-mass stars dominate the C and N production.Comment: Accepted for publication in Ap

    Lyα\alpha profile, dust, and prediction of Lyα\alpha escape fraction in Green Pea Galaxies

    Full text link
    We studied Lyman-α\alpha (Lyα\alpha) escape in a statistical sample of 43 Green Peas with HST/COS Lyα\alpha spectra. Green Peas are nearby star-forming galaxies with strong [OIII]λ\lambda5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about 2/3 of Green Peas are strong Lyα\alpha line emitters with rest-frame Lyα\alpha equivalent width >20>20 \AA. The Lyα\alpha profiles of Green Peas are diverse. The Lyα\alpha escape fraction, defined as the ratio of observed Lyα\alpha flux to intrinsic Lyα\alpha flux, shows anti-correlations with a few Lyα\alpha kinematic features -- both the blue peak and red peak velocities, the peak separations, and FWHM of the red portion of the Lyα\alpha profile. Using properties measured from SDSS optical spectra, we found many correlations -- Lyα\alpha escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [OIII]/[OII] ratio. We fit their Lyα\alpha profiles with the HI shell radiative transfer model and found Lyα\alpha escape fraction anti-correlates with the best-fit NHIN_{HI}. Finally, we fit an empirical linear relation to predict Lyα\alpha escape fraction from the dust extinction and Lyα\alpha red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of IGM scatterings from Lyα\alpha escape and to probe the IGM optical depth along the line of sight of each z>7z>7 Lyα\alpha emission line galaxy in the JWST era.Comment: 15 pages, 11 figures, 3 tables, machine-readable tables included. ApJ in-pres

    Spectroscopic detections of CIII]1909 at z~6-7: A new probe of early star forming galaxies and cosmic reionisation

    Get PDF
    Deep spectroscopic observations of z~6.5 galaxies have revealed a marked decline with increasing redshift in the detectability of Lyman-alpha emission. While this may offer valuable insight into the end of the reionisation process, it presents a fundamental challenge to the detailed spectroscopic study of the many hundreds of photometrically-selected distant sources now being found via deep HST imaging, and particularly those bright sources viewed through foreground lensing clusters. In this paper we demonstrate the validity of a new way forward via the convincing detection of an alternative diagnostic line, CIII]1909, seen in spectroscopic exposures of two star forming galaxies at z=6.029 and 7.213. The former detection is based on a 3.5 hour X-shooter spectrum of a bright (J=25.2) gravitationally-lensed galaxy behind the cluster Abell 383. The latter detection is based on a 4.2 hour MOSFIRE spectra of one of the most distant spectroscopically confirmed galaxies, GN-108036, with J=25.2. Both targets were chosen for their continuum brightness and previously-known redshift (based on Lyman-alpha), ensuring that any CIII] emission would be located in a favorable portion of the near-infrared sky spectrum. We compare our CIII] and Lyman-alpha equivalent widths in the context of those found at z~2 from earlier work and discuss the motivation for using lines other than Lyman-alpha to study galaxies in the reionisation era.Comment: 10 pages, 6 figures, submitted to MNRA

    Ultraviolet spectra of extreme nearby star-forming regions --- approaching a local reference sample for JWST

    Full text link
    Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z/2Z_\odot/2. Such tests are particularly important for interpreting the surprising high-ionization UV line emission detected at z>6z>6 in recent years. We present HST/COS ultraviolet spectra of ten nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8<12+logO/H<8.57.8<12+\log\mathrm{O/H}<8.5) and present uniformly large specific star formation rates (sSFR 102\sim 10^2 Gyr1\mathrm{Gyr}^{-1}). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z67z\sim 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12+logO/H8.012+\log\mathrm{O/H}\lesssim 8.0 (Z/Z1/5Z/Z_\odot \lesssim 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+\mathrm{He^+}-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.Comment: 27 pages, 13 figures, 11 tables, accepted for publication in MNRA

    Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies

    Full text link
    We report on a sample of 51 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We calculate Si II kinematics and densities arising from warm gas entrained in galactic outflows. We use multi-wavelength ancillary data to estimate stellar masses (M_\ast), star-formation rates (SFR), and morphologies. We derive significant correlations between outflow velocity and SFR0.1^{\sim 0.1}, M0.1_\ast^{\sim 0.1} and vcirc1/2_\text{circ}^{\sim 1/2}. Some mergers drive outflows faster than these relations prescribe, launching the outflow faster than the escape velocity. Calculations of the mass outflow rate reveal strong scaling with SFR1/2^{\sim 1/2} and M1/2_\ast^{\sim 1/2}. Additionally, mass-loading efficiency factors (mass outflow rate divided by SFR) scale approximately as M1/2_\ast^{-1/2}. Both the outflow velocity and mass-loading scaling suggest that these outflows are powered by supernovae, with only 0.7% of the total supernovae energy converted into the kinetic energy of the warm outflow. Galaxies lose some gas if log(M_\ast/M_\odot) < 9.59.5, while more massive galaxies retain all of their gas, unless they undergo a merger. This threshold for gas loss can explain the observed shape of the mass-metallicity relation.Comment: 28 pages, 15 figures, submitted to Ap

    Ultraviolet Emission Lines in Young Low Mass Galaxies at z~2: Physical Properties and Implications for Studies at z>7

    Get PDF
    We present deep spectroscopy of 17 very low mass (M* ~ 2.0x10^6 Msun to 1.4x10^9 Msun) and low luminosity (M_UV ~ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z~1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous lines (NIV], OIII], CIV, Si III], CIII]) which are rarely seen in individual spectra of more massive star forming galaxies. CIII] is detected in 16 of 17 low mass star forming systems with rest-frame equivalent widths as large as 13.5 Angstroms. Nebular CIV emission is present in the most extreme CIII] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal poor gas and stars, young stellar populations, and large ionization parameters. The young ages implied by the emission lines and continuum SEDs indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colors, and large sSFRs of our sample are similar to those of typical z>6 galaxies. Given the strong attenuation of Ly-alpha in z>6 galaxies we suggest that CIII] is likely to provide our best probe of early star forming galaxies with ground-based spectrographs and one of the most efficient means of confirming z>10 galaxies with the James Webb Space Telescope.Comment: 22 pages, 8 figures, accepted for publication in MNRA
    corecore